Linear System of Differential Equations with a Quadratic Invariant as the Schrödinger Equation

نویسندگان

چکیده

Abstract Linear systems of differential equations with an invariant in the form a positive definite quadratic real Hilbert space are considered. It is assumed that system has simple spectrum and eigenvectors complete orthonormal system. Under these assumptions, linear can be represented Schrödinger equation by introducing suitable complex structure. As example, we present such representation for Maxwell without currents. In view observations, dynamics defined some partial treated terms basic principles methods quantum mechanics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

Solving the liner quadratic differential equations with constant coefficients using Taylor series with step size h

In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Linear-Quadratic Control of Backward Stochastic Differential Equations

This paper is concerned with optimal control of linear backward stochastic differential equations (BSDEs) with a quadratic cost criteria, or backward linear-quadratic (BLQ) control. The solution of this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique. Two alternative, though equivalent, expressions for the optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Doklady Mathematics

سال: 2021

ISSN: ['1064-5624', '1531-8362']

DOI: https://doi.org/10.1134/s1064562421010075